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Abstract. Simple contrapositive assumption-based frameworks are
a general setting for structured argumentation, providing a robust ap-
proach to reasoning with arguments and counter-arguments. In this
paper we extend these frameworks with priorities and introduce some
new results concerning the semantics of the resulting formalisms.

1 INTRODUCTION
Assumption-based frameworks (ABFs) are a well-established form
of structured argumentation, aimed at reasoning in the presence of
arguments and counter-arguments (see, e.g., [7, 13, 30]). A general
form of ABFs called simple contrapositive assumption-based frame-
works is considered in [22, 23, 24], where it is shown that this fam-
ily of ABFs has many desirable properties. In this paper we extend
simple contrapositive ABFs with priorities, expressing the relative
strengths (or reliability) of arguments. While extensions of ABFs
with priorities have already been studied in the literature (mainly in
the context of ABA+ frameworks, see e.g. [12, 14]), several new
finding on these frameworks are reported, among which are the fol-
lowing:

• Dung-style semantics [17] is considered for prioritized ABFs. It
is shown that, like similar cases in other forms of structured ar-
gumentation, in many cases the set of naive, stable, and preferred
extensions coincide. However, unlike other forms of structured ar-
gumentation (including common cases of simple contrapositive
ABFs), when priorities are introduced the grounded semantics is
not always unique, nor does it necessarily coincide with the well-
founded semantics.

• We show that under the reversibility condition (see below), all the
extensions of simple contrapositive ABFs are necessarily consis-
tent and are closed under logical consequences (properties that are
not assured in general for extensions of prioritized ABFs in par-
ticular, and structured argumentation frameworks in general).

• Relations to reasoning with preferred maximally consistent sub-
sets of the premises [8] are shown.

• The impact of the underlying preference setting on the properties
of the prioritized ABFs that are induced by them is analyzed in
terms of some postulates.

• We define conditions that assure that prioritized ABFs avoid an
undesirable property of prioritized systems, known as the drown-
ing effect, according to which arguments with lower priorities are
excluded in the presence of unrelated arguments with higher pri-
orities.
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The outcome of this work is therefore a robust approach of argu-
mentative, prefrerence-based reasoning with defeasible assumptions.
This approach is compared in the last section of the paper to other ap-
proaches of accommodating priorities in structured argumentation.

2 PRELIMINARIES
In what follows we shall denote by L an arbitrary propositional lan-
guage. Atomic formulas in L are denoted by p,q,r, compound for-
mulas are denoted by ψ,φ ,σ , and sets of formulas in L are denoted
by Γ, ∆, Θ (possibly primed or indexed). The powerset of L is de-
noted by ℘(L ).

Definition 1 A logic for a language L is a pair L = 〈L ,`〉, where
` is a (Tarskian) consequence relation for L , that is, a binary relation
between sets of formulas and formulas in L , that is reflexive (if ψ ∈
Γ then Γ ` ψ), monotonic (if Γ ` ψ and Γ ⊆ Γ′ then Γ′ ` ψ), and
transitive (if Γ ` ψ and Γ′,ψ ` φ then Γ,Γ′ ` φ ).

In addition, we shall assume that L is structural (closed under sub-
stitutions: if Γ ` ψ then θ(Γ) ` θ(ψ) for every L -substitution θ )
and non-trivial (there are a non-empty set Γ and a formula ψ such
that Γ 6` ψ).

The `-transitive closure of a set Γ of L -formulas is Cn`(Γ) =
{ψ | Γ ` ψ}. When ` is known or arbitrary, we just write Cn(Γ).

We shall assume that the language L contains at least the follow-
ing connectives and constant:
• a `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for atomic p).
• a `-conjunction ∧, satisfying: Γ ` ψ ∧φ iff Γ ` ψ and Γ ` φ .
• a `-disjunction∨, satisfying: Γ,φ∨ψ `σ iff Γ,φ `σ and Γ,ψ `σ .
• a `-implication ⊃, satisfying: Γ,φ ` ψ iff Γ ` φ ⊃ ψ .
• a `-falsity F, satisfying: F ` ψ for every formula ψ .

We abbreviate {¬γ | γ ∈ Γ} by ¬Γ, and when Γ is finite we
denote by

∧
Γ (respectively, by

∨
Γ), the conjunction (respectively,

the disjunction) of all the formulas in Γ. We shall say that Γ is `-
tautological if ` Γ, and that Γ is `-consistent if Γ 6` F (otherwise Γ

is `-inconsistent).

Definition 2 A logic L = 〈L ,`〉 is explosive, if for every L -
formula ψ the set {ψ,¬ψ} is `-inconsistent.3 We say that L is con-
trapositive, if for every Γ and ψ it holds that Γ ` ¬ψ iff either ψ = F,
or for every φ ∈ Γ we have that Γ\{φ},ψ ` ¬φ .

Note 1 Classical logic (CL), intuitionistic logic, and standard modal
logics, are all examples of well-known formalisms which are both
explosive and contrapositive. A useful property of an explosive logic
L= 〈L ,`〉 is that if S ` ψ and S ` ¬ψ , then S ` φ .

3 That is, ψ,¬ψ ` F. Since F ` φ , by transitivity ψ,¬ψ ` φ . Thus, in explo-
sive logics every formula follows from complementary assumptions.



Next, we define assumption-based argumentation frameworks
(ABFs). The following definition generalizes the one from [7].

Definition 3 An assumption-based (argumentation) framework is a
tuple ABF = 〈L,Γ,Ab,∼〉, where:

• L= 〈L ,`〉 is a propositional logic.
• Γ (the strict assumptions) and Ab (the candidate/defeasible as-

sumptions) are distinct (countable) sets of L -formulas, where the
former is `-consistent and the latter is nonempty.

• ∼ : Ab→℘(L ) is a contrariness operator, assigning a finite set
of L -formulas to every defeasible assumption in Ab, such that for
every consistent and non-tautological ψ ∈ Ab \ {F}, it holds that
ψ 6`

∧
∼ψ and

∧
∼ψ 6` ψ .

Note 2 Unlike the setting of [7], an ABF may be based on any
Tarskian logic L. Also, the strict as well as the defeasible assump-
tions may not be just atomic formulas. We note that the contrariness
operator is not a connective of L , as it is restricted to the candidate
assumptions.

Defeasible assertions in an ABF may be attacked in the presence
of contrary defeasible information, as defined below.

Definition 4 Let ABF = 〈L,Γ,Ab,∼〉 be an ABF, ∆,Θ ⊆ Ab, and
ψ ∈ Ab. We say that ∆ attacks ψ iff Γ,∆ ` φ for some φ ∈∼ψ .
Accordingly, ∆ attacks Θ if ∆ attacks some ψ ∈Θ.

Example 1 Let L= CL, Γ = /0, and Ab = {p,¬p,q}. A correspond-
ing attack diagram is shown in Figure 1.4

{q}{p,¬p,q}
{p}

{¬p}

{p,q}

{¬p,q}

Figure 1. An attack diagram for Example 1

Since in classical logic inconsistent premises entail any conclu-
sion, the classically inconsistent set {p,¬p,q} attacks all the other
sets in the diagram (E.g., {p,¬p,q} attacks {q}, since p,¬p,q`¬q).

Definition 4 gives rise to the following adaptation to ABFs of the
usual Dung-style semantics [17] for abstract argumentation.

Definition 5 ([7]) Let ABF = 〈L,Γ,Ab,∼〉 be an assumption-based
framework, and let ∆ be a set of assumptions. Below, maximum and
minimum are taken with respect to set inclusion. We say that:

• ∆ is closed (in ABF) if ∆ = Ab∩Cn`(Γ∪∆).
• ∆ is conflict-free (in ABF) iff there is no ∆′ ⊆ ∆ that attacks some

ψ ∈ ∆.
• ∆ is naive (in ABF) iff it is closed and maximally conflict-free.
• ∆ defends (in ABF) a set ∆′ ⊆ Ab iff for every closed set Θ that

attacks ∆′ there is ∆′′ ⊆ ∆ that attacks Θ.
• ∆ is admissible (in ABF) iff it is closed, conflict-free, and defends

every ∆′ ⊆ ∆.

4 For reasons that will become apparent in the sequel we include in the dia-
gram only closed sets (i.e., only subsets ∆⊆ Ab such that ∆ = Ab∩Cn`(Γ∪
∆) (see Definition 5). Thus, the set {p,¬p} is omitted from the diagram.

• ∆ is complete (in ABF) iff it is admissible and contains every ∆′ ⊆
Ab that it defends.

• ∆ is well-founded (in ABF) iff ∆ =
⋂
{Θ⊆ Ab |Θ is complete}.5

• ∆ is grounded (in ABF) iff it is minimally complete.
• ∆ is preferred (in ABF) iff it is maximally admissible.
• ∆ is stable (in ABF) iff it is closed, conflict-free, and attacks every

ψ ∈ Ab\∆.

The set of the complete (respectively, the naive, grounded,
well-founded, preferred, stable) extensions of ABF is denoted
Cmp(ABF) (respectively, Naive(ABF), Grd(ABF), WF(ABF),
Prf(ABF), Stb(ABF)). We shall denote by Sem(ABF) any of the
above-mentioned sets. The entailment relations that are induced from
an ABF (with respect to a certain semantics) are defined as follows:

Definition 6 Given an assumption-based framework ABF =
〈L,Γ,Ab,∼〉 and Sem ∈ {Naive,WF,Grd,Prf,Stb}, we denote:6

• ABF |∼∩Semψ iff Γ,∆ ` ψ for every ∆ ∈ Sem(ABF).
• ABF |∼∪Semψ iff Γ,∆ ` ψ for some ∆ ∈ Sem(ABF).

Example 2 Consider Example 1, where L = CL, Γ = /0, and Ab =
{p,¬p,q} (see also Figure 1). Here, Naive(ABF) = Prf(ABF) =
Stb(ABF) = {{p,q},{¬p,q}}, thus ABF |∼∗Sem q for every ∗ ∈
{∪,∩} and Sem ∈ {Naive,Prf,Stb}. Also, Grd(ABF) = /0, thus for
∗ ∈ {∪,∩} we have that ABF |∼∗Grd ψ only if ψ is a CL-tautology.

In the rest of the paper we shall concentrate on the following com-
mon family of ABFs (see [22, 23] for a justification of this choice):

Definition 7 A simple contrapositive ABF is an assumption-based
framework ABF = 〈L,Γ,Ab,∼〉, where L is an explosive and con-
trapositive logic, and ∼ψ = {¬ψ}.

3 PRIORITIZED SETTINGS AND pABFS
Sometimes it is useful to extend ABFs with a numeric information
for representing preferences among assumptions. This may be done
as follows (where lower numbers represent higher preferences):

• An allocation function is a total function g : Ab→N on the set Ab
of candidate assumptions.

• A numeric aggregation function f is a total function that maps
multisets of non-negative natural numbers into a non-negative real
number, such that ∀x ∈ N f ({x}) = x. We also assume that an ag-
gregation function is ⊆-coherent in its values, namely, it is either
non-decreasing with respect to the subset relation ( f (∆′) ≤ f (∆)
whenever ∆′ ⊆ ∆) or non-increasing with respect to the subset re-
lation ( f (∆′)≥ f (∆) whenever ∆′ ⊆ ∆).

• A pair P = 〈g, f 〉 where g is an allocation function and f is a
numerical aggregation function is called a prioritized setting.

An allocation function makes preferences among the defeasible
information. The sets Abi = {ψ ∈ Ab | g(ψ) = i} form a partition of
Ab, which in turn may be viewed as a stratified set. This is sometimes
denoted by Ab = Ab1 ⊕ . . .⊕ Abn. Aggregation functions are then
used for aggregating the preferences. The maximum, minimum, and
the summation functions are common aggregation functions.

5 Clearly, the well-founded extension of an ABF is unique.
6 Unlike standard consequence relations (Definition 1), which are relations

between sets of formulas and formulas, the entailments here are relations
between ABFs and formulas. This will not cause any confusion.



To assure some desirable properties of our setting, we require that
the range of the allocation function should be linearly ordered (while
in other frameworks, like ABA+ [14], any preorder is permitted).
Yet, the aggregation of the allocations in our case is more general
than that of ABA+, for instance, which allows only comparisons by
max-values (called there weakest link).

To ease the notations we will sometimes write f (g(∆)) instead of
f (g(ψ1), . . . ,g(ψn)) (where ∆= {ψ1, . . . ,ψn}). Also, we shall some-
times write ∆1 �P ∆2, or just ∆1 � f ∆2 when g is arbitrary, to denote
that f (g(∆1))≤ f (g(∆2)). This intuitively indicates that ∆1 is at least
as preferred as ∆2.

Next, we consider some useful properties of preference settings.

Definition 8 A prioritized setting P = 〈g, f 〉 is called:

• reversible, if for every nonempty set ∆ and a formula φ , it holds
that if ∆�P φ , there is a δ ∈ ∆ such that ∆∪{φ}\δ �P δ .

• max-upper-bounded (or simply max-bounded), if for every set ∆

of formulas, f (g(∆))≤maxδ∈∆( f (g(δ ))),
• max-lower-bounded, if for every set ∆ of formulas, f (g(∆)) ≥

maxδ∈∆( f (g(δ ))).

Proposition 1 A max-bounded prioritized setting is reversible.7

Example 3 It is easy to see that for every allocation function g the
prioritized settings Min = 〈g,min〉 and Max = 〈g,max〉 are max-
bounded. Moreover, every prioritized setting with a non-increasing
aggregation function is max-bounded. By Proposition 1, these pref-
erence settings are also reversible. Also, the prioritized settings
Max = 〈g,max〉 and Sum = 〈g,Σ〉 are max-lower-bounded. More-
over, every prioritized setting with a non-decreasing aggregation
function is max-lower-bounded. For an example of a prioritized set-
ting that is max-lower-bounded and reversible yet not max-upper-
bounded, consider e.g. Max+ = 〈g,max+〉, where max+({x}) = x
and max+(∆) = max(∆)+1 if ∆ is not singleton.

Prioritized ABFs are defined now as follows:

Definition 9 A prioritized assumption-based framework (pABF, for
short) is a pair pABF = 〈ABF,P〉, where ABF is an assumption-
based argumentation framework and P is a prioritized setting.

pABFs are similar to (non-prioritized) ABFs, except that the prior-
ities are taken into account when defining attacks (cf. Definition 4).
A prioritized ABF is called reversible (respectively, max-bounded,
max-lower-bounded), if so is its prioritized setting.

Definition 10 Let pABF = 〈ABF,P〉 be a prioritized ABF, where
P = 〈g, f 〉. Let also ∆,Θ⊆ Ab, and ψ ∈ Ab. Suppose that ∆ attacks
ψ (in the sense of Definition 4). The P-attacking value of ∆ on ψ is

val f ,g(∆,ψ) =
min{ f (g(∆′)) | ∆′ is a minimal subset of ∆ that attacks ψ}.

We say that ∆ p-attacks ψ iff ∆ attacks ψ (in the sense of Defini-
tion 4), and val f ,g(∆,ψ) ≤ f (g(ψ)). Again, we say that ∆ p-attacks
Θ if ∆ p-attacks some ψ ∈Θ.

Note 3 A simplified version of the attacks in Definition 10 could be
the following: a set ∆ = {ψ1, . . . ,ψn} ⊆ Ab p-attacks ψ iff ∆ attacks
ψ (in the sense of Definition 4) and f (g(∆)) ≤ f (g(ψ)). However,

7 Due to lack of space some proofs are reduced or omitted altogether.

this alternative definition of p-attacks has some unintuitive conse-
quences. To see this, consider again the ABF of Example 1 with the
allocation function g(p) = 1, g(¬p) = 2, g(q) = 3, and the aggrega-
tion function f = max. Note that according to the alternative defini-
tion of p-attacks given in this note, Θ = {p,q} does not max-attack
∆ = {¬p}, since it has a formula (q) which is of a lower preference
than the attacked formula in ∆. This seems to be counter-intuitive,
since the attack of Θ on ∆ is ‘blocked’ by a formula which is ‘irrele-
vant’ to the attack.

In contrast to this, Θ does max-attack ∆ according to Definition 10,
as expected, since its attacking value on ∆ is 1, which is smaller than
the preference value (2) of the attacked formula in ∆. Indeed, the
attacks in Definition 10 take into consideration only the preference
values of the formulas that are relevant to the attack. A major advan-
tage of this is considered in Lemma 1 below.

Lemma 1 If ∆ p-attacks Θ, so does any superset of ∆.

Proof Suppose that ∆ p-attacks Θ. Then there is a ψ ∈ Θ such that
∆ attacks ψ and val f ,g(∆,ψ) ≤ f (g(ψ)). Let now ∆ ⊆ ∆′. By the
monotonicity of `, ∆′ also attacks ψ . Moreover, by Definition 10,
val f ,g(∆

′,ψ) ≤ val f ,g(∆,ψ), and so val f ,g(∆
′,ψ) ≤ f (g(ψ)). It fol-

lows that ∆′ p-attacks ψ and so ∆′ also p-attacks Θ. 2

Lemma 2 For every ∆⊆ Ab and ψ ∈ Ab, val f ,g(∆,ψ)≤ f (g(∆)).

The semantic notions in Definition 5 are carried on to the prior-
itized case by replacing attacks with p-attacks. We continue to de-
note by Sem(pABF) the extensions of pABF according to Sem ∈
{Cmp,Naive,Grd,Prf,Stb}, and define the entailments |∼∩Sem and
|∼∪Sem just as in Definition 6, where pABF replaces ABF.

Example 4 Consider again the ABF of Example 1 with the alloca-
tions g(p) = 1, g(¬p) = 2, g(q) = 3, and aggregation by f = max.
An attack diagram of the prioritized ABF is shown in Figure 2.

{q}{p,¬p,q}
{p}

{¬p}

{p,q}

{¬p,q}

Figure 2. An attack diagram for Example 4

Here Cmp(pABF)=Grd(pABF)=WF(pABF)=Prf(pABF)=
Stb(pABF) = {{p,q}},8 thus pABF |∼∗Sem p and pABF |∼∗Sem q for
every semantics Sem and every ∗ ∈ {∪,∩}. Note that in case that
the allocation value of q is smaller than those of p and ¬p, the set
{p,¬p,q} does not attack the sets {q} and {p,q}, in which case
the set {q} also belongs to Cmp(pABF). In this case Grd(pABF) =
WF(pABF) = {{q}}, while Prf(pABF) = Stb(pABF) = {{p,q}}.

In the next sections we consider some properties of prioritized
ABFs. In what follows we continue to assume that ABF in the prior-
itized framework pABF = 〈ABF,P〉, is simple contrapositive.9

8 Note that {p} is not complete (thus it does not belong to any of the above-
mentioned sets), since it defends q, which is not a member of this set.

9 As shown in [22], for simple contrapositive ABFs the closure requirement
in Definition 5 is redundant. We shall therefore disregard it in what follows
(see also Section 4.3 below).



4 ARGUMENTATION-THEORETIC
PROPERTIES

First, we check some general properties of the extensions of priori-
tized ABFs: their inter-relations (Section 4.1) and main characteris-
tics in terms of consistency (Section 4.2) and closure (Section 4.3).

4.1 Relations between the Extensions
4.1.1 Naive, Preferred and Stable Semantics

In [22, 23] we have shown that in non-prioritized simple contrapos-
itive ABFs the set of naive, preferred and stable extension coincide
(that is, if ABF is a simple contrapositive ABF without priorities
then Naive(ABF) = Prf(ABF) = Stb(ABF)). As the next examples
show, when priorities are involved, this is no longer the case: Ex-
ample 5 shows a situation in which the naive semantics is different
than the preferred and the stable semantics, and Example 6 illustrates
a case where the preferred semantics is different than the stable se-
mantics.

Example 5 In Example 4, the set {¬p,q} is maximally conflict-free
(thus naive), but it is not even admissible (not to mention preferred
or stable), since it does not defend (any of) its elements.

Example 6 Consider a prioritized ABF with L = CL, Γ = {¬(p∧
q ∧ s)} and Ab = {p,q,s,F}, where g(ψ) = 1 for every ψ ∈ Ab
and f = Σ. We define Σ{ /0} = 0, thus for every ψ it holds that
val f ,g( /0,ψ) = 0. Note that /0 p-attacks every Θ⊆ Ab such that F∈Θ,
and no other subset of Ab attacks another subset of Ab. This means
that {p,q,s} is the only maximally admissible subset of Ab, never-
theless it is not closed, since F 6∈ {p,q,s}. If we restrict our attention
to maximally admissible closed sets, there are three such sets: {p,q},
{s,q} and {p,s}. However, these sets are not complete since they do
not include an unattacked assumption. For example, {p,q} does not
include s, even though s is unattacked.

For similar reasons, neither of these sets are stable, since they do
not attack the unattacked element in Ab that is not included in them
(e.g., {p,q} does not p-attack s). Thus, unless further assumptions
are posed on the aggregation function (see below), a maximally ad-
missible set might not be complete, preferred extensions might not
be stable, and stable extensions might not exist.

Next, we show that, despite of the last example, the sets of pre-
ferred and stable extensions still coincide in many prioritized simple
contrapositive ABFs (see also Note 5 below).

Proposition 2 Let pABF be a max-bounded prioritized ABF and let
∆ be a conflict-free set in Ab. Then ∆ is maximally admissible iff it
p-attacks any A ∈ Ab\∆.

Outline of proof One direction is clear: if a conflict-free ∆ p-attacks
any A∈Ab\∆ it must be maximally admissible. Let now ∆ be a maxi-
mally admissible set and suppose towards a contradiction that there is
some ψ ∈Ab\∆ s.t. ∆ does not p-attack ψ . Let {ψ1, . . . ,ψn}=Ab\∆

s.t. i < j if g(ψi) < g(ψ j) (i.e., ψ1 is among the strongest assump-
tions that are not in ∆, ψ2 has the same properties but has weaker or
the same strength as ψ1, and so on). Let ∆? =

⋃
i≥0 ∆i, where ∆0 = ∆

and for every 0≤ i≤ n−1,

∆i+1 =

{
∆i∪{ψi+1} if Γ,∆i 6` ¬ψi+1,

∆i otherwise.

It can be show that ∆? is an admissible set, and ∆ ( ∆?. This contra-
dicts the maximal admissibility of ∆. 2

4.1.2 Well -Founded and Grounded Semantics

As the next example shows, the grounded semantics is not always
unique (unlike, e.g., in abstract argumentation frameworks), and so
it does not necessarily coincide with the well-founded semantics
(which is unique by its definition).

Example 7 Consider a pABF with L = CL, Γ = {p∧ q ⊃ ¬s, r ⊃
s, s ⊃ r}, Ab = {s, p,q,r}, g(s) = 1, g(p) = g(q) = 2, g(r) = 3 and
f = max. The p-attack diagram of this pABF is shown in Figure 3.

{s}

{q}

{p} {r}

{q,s}

{p,s}

{p,q}

{r,s}

Figure 3. An attack diagram for Example 7

Here there is no unique minimal complete extension: {s} is not at-
tacked but it is not closed since Γ,{s} ` r. Also, {r,s} does not defend
itself from {p,q}. This pABF has two minimal complete extensions,
{p,s,r} and {q,s,r}, which are also preferred and stable.

Note 4 In [22, 23] we have shown that in the non-prioritized case,
when F ∈ Ab, the grounded and the well-founded semantics coincide
and are unique. As Example 6 shows, in prioritized ABFs this is no
longer the case. (Example 6 also shows that in general, Dung fun-
damental lemma, stating that if ∆ is admissible and defends ψ then
∆∪{ψ} is also admissible, does not hold for prioritized ABFs).

4.2 Consistency of Extensions

Extensions of reversible prioritized ABFs are consistent:

Proposition 3 Let pABF = 〈ABF,P〉 be a reversible prioritized
ABF, Then pABF satisfies the consistency postulate in [11]: There
is no conflict-free set ∆⊆ Ab such that Γ,∆ ` ¬ψ for some ψ ∈ ∆.

Proof Suppose that ∆ ⊆ Ab is conflict-free in pABF and that Γ∪
∆′ ` ¬φ for some {φ} ∪ ∆′ ⊆ ∆. This means that val f ,g(∆′,φ) >
f (g(φ)) (otherwise, val f ,g(∆′,φ) 6 f (g(φ)) and so ∆′ p-attacks φ ,
thus ∆ cannot be conflict-free). Since P is reversible, there is a ψ ∈
∆′ s.t. f (g(∆′ ∪{φ}\{ψ})) 6 f (g(ψ)), and since val f ,g(∆

′ ∪{φ}\
{ψ},ψ)6 f (g(∆′∪{φ}\{ψ})) (Lemma 2), we have that val f ,g(∆′∪
{φ} \ {ψ},ψ) 6 f (g(ψ)). Now, since L is contrapositive, Γ′ ∪∆′ ∪
{φ}\{ψ} ` ¬ψ . Consequently, ∆′∪{φ}\{ψ}⊂ ∆ p-attacks ψ ∈ ∆,
contradicting the assumption that ∆ is conflict-free. 2

The next example shows that the reversibility requirement from
the aggregation function in Proposition 3 is indeed necessary.

Example 8 Consider a variation of Example 6 where F is removed
from Ab, namely: Γ = {¬(p∧ q∧ s)}, Ab = {p,q,s}, g(δ ) = 1 for
every δ ∈ Ab, and f = Σ. Clearly, P = 〈g, f 〉 is not reversible (for
instance, {p,q} �P s, yet neither {p,s} �P q nor {q,s} �P p).
Also, similar considerations as in Example 6 show that there is no
p-attack in this example. Thus, there is one maximally admissible
set: Ab. However, this set is not consistent. Thus, consistency can be
violated when f is not reversible.



4.3 Closure of Extensions
Next, we consider the closure requirement from extensions (see Def-
inition 5). As Example 8 shows, this requirement is, in general not
redundant in prioritized ABFs. However, as we show below, under
the assumption that the aggregation function is reversible, the clo-
sure requirement may be lifted. This result generalizes similar results
shown in [22, 23] for simple contrapositive ABFs without priorities.

Proposition 4 Let pABF = 〈ABF,P〉 be a prioritized ABF.
• If pABF is reversible, the closure requirement is redundant in the
definition of stable extensions (Definition 5): Any conflict-free ∆⊆Ab
that p-attacks every A ∈ Ab\∆ is closed.
• If pABF is max-bounded, the closure requirement is redundant in
the definition of preferred extensions (Definition 5): Any ∆⊆ Ab that
is conflict free and maximally admissible is closed.

Proof For the first item, suppose that ∆ p-attacks every ψ ∈ Ab\∆,
yet Γ,∆ ` φ for some φ ∈ Ab \∆. Since ∆ p-attacks φ , it holds that
Γ,∆ ` ¬φ . Thus, by Note 1, we have that Γ,∆ ` F. By Proposition 3,
this is a contradiction to the assumption that ∆⊆ Ab is conflict-free.

For the second item, suppose that ∆⊆ Ab is conflict free and max-
imally admissible. By proposition 2, ∆ attacks every A ∈ Ab\∆. By
the first item of the proposition, this means that ∆ is closed. 2

Note 5 By Propositions 4 and 1, Proposition 2 may be restated as
follows: The stable extensions and the preferred extensions of a max-
bounded prioritized ABF coincide.

5 REPRESENTATION OF PREFERRED
MAXIMALLY CONSISTENT SUBSETS

The relation between prioritized argumentation frameworks and rea-
soning with prioritized maximally consistent subsets of the premises
has been investigated in several different contexts (see, e.g. [4, 5, 28]
and [21, Chapter 7]). In this section we show that under certain as-
sumptions, prioritized assumption-based argumentation can repre-
sent Brewka’s preferred sub-theories [8], as defined next.

Definition 11 Let Ab = Ab1⊕ . . .⊕Abn (recall Section 3), and let
∆,Θ ⊆ Ab. We say that ∆ is preferred over Θ (with respect to P),
denoted ∆ @P Θ (or just ∆ @ Θ when P is known or arbitrary), iff
there is an 1≤ i≤ n such that Ab j∩∆ = Ab j∩Θ for every 1≤ j < i,
and Abi∩∆ ) Abi∩Θ.

Thus, ∆ is preferred over Θ when both sets have the same i− 1
stratifications with the g-most preferred formulas, and the i-th strat-
ification of ∆ properly contains that of Θ. This is a kind of lexico-
graphic preference in term of the g-values. In turn, this preference
can be posed on the maximally consistent subsets of Ab:

Definition 12 Let pABF = 〈ABF,P〉 be a prioritized ABF

• ∆⊆Ab is a maximally consistent set (MCS) in ABF, if (a) Γ,∆ 6` F
and (b) Γ,∆′ `F for every ∆(∆′⊆Ab.10 The set of the maximally
consistent sets in ABF is denoted MCS(ABF).

• ∆⊆ Ab is a preferred maximally consistent set (pMCS) in pABF,
if ∆ ∈MCS(ABF) and there is no Θ ∈MCS(ABF) such that Θ @
∆. The set of the prioritized maximally consistent sets in ABF is
denoted MCS@(pABF).

10 In what follows, (a) is called the consistency condition and (b) is the max-
imality condition.

Relations between prioritized argumentation frameworks and rea-
soning with prioritized maximally consistent subsets of the premises
are shown in the next two lemmas:

Lemma 3 Let pABF be a max-lower-bounded and reversible pABF,
and let ∆ be a stable extensions of pABF. Then ∆ ∈MCS@(pABF)

Lemma 4 Let pABF be a max-bounded pABF, and let ∆ ∈
MCS@(pABF). Then ∆ is a stable extensions of pABF.

When the aggregation is by the maximum function, the two lem-
mas above give a full characterization of the preferred and the stable
semantics in terms of preferred maximally consistent sets.

Proposition 5 Let pABF = 〈ABF,P〉 be a prioritized ABF
in which P = 〈g,max〉 for some allocation function g. Then
Prf(pABF) = Stb(pABF) =MCS@(pABF).

Proof Since P = 〈g,max〉 is max-bounded, by Proposition 2,
Prf(pABF) = Stb(pABF). Since it is also max-lower-bounded, by
Lemmas 3 and 4, Stb(pABF) =MCS@(pABF). Altogether, we get
the proposition. 2

6 PREFERENCE HANDLING PROPERTIES
6.1 Preference-Related Postulates
In this section we consider a series of postulates that are concerned
with the handling of preferences in prioritized ABFs. In particular,
we show how the properties of the preference setting affect the prop-
erties of the resulting prioritized ABF (under the preferred and stable
semantics).

6.1.1 Degenerated Preferences

We start with two postulates that relate extensions of prioritized
ABFs and extensions of their non-prioritized fragments. The first one
(introduced in [1, 10]) refers to situations in which the preference set-
ting is degenerated.

Empty Preferences (for Sem): If P is a degenerated prefer-
ence setting (i.e., if g is a uniform allocation function), then
Sem(pABF) = Sem(ABF).

Empty preferences is satisfied by every prioritized ABF in which
the aggregation function is invariant to multiple occurrences, namely:
if S is a set and S′ is a multiset with the same elements as S (so S′

may have multiple instances of the same element in S but not new
elements not in S), then f (S) = f (S′). This is the case, e.g., when
f = min or f = max.

Proposition 6 Let pABF = 〈ABF,P〉 be a pABF with a preference
setting P = 〈g, f 〉. If f is invariant to multiple occurrences then
pABF satisfies the empty preferences postulate for every Sem.

6.1.2 Preferences as Criteria for Selecting Extensions

The next property also relates the extensions of a prioritized ABF
to the extension of its ABF. This postulate is taken from [29]. In-
tuitively, it may be understood by the fact that priorities allow to
select the ‘best’ extensions according to some preference criteria, in
the sense that any extension of a pABF is an extension of the corre-
sponding ABF.11

11 In a way, this resembles what is called in [2] refining argumentation frame-
works by preferences, where priorities are used for selecting extensions
rather than for defining attacks.



Extensions Selection (for Sem): If E ∈ Sem(pABF) then E ∈
Sem(ABF).

Proposition 7 Let pABF = 〈ABF,P〉 be a reversing pABF. Then
pABF satisfies the extensions selection postulate for every Sem ∈
{Naive,Prf,Stb}.

6.1.3 Conflict Preservation

The next postulate is considered, e.g., in [1, 3, 26].

Conflict Preservation (for Sem): If E ∈ Sem(pABF) and ∆ p-
attacks Θ, either ∆ 6∈ E or Θ 6∈ E .

Conflict preservation follows in our case from the fact that every
E ∈ Sem(pABF) is conflict-free. This property is not so obvious in
other formalisms in which attacks are sometimes discarded due to
preference over arguments (see [12] for some examples).

6.1.4 Inclusion of the Most Preferred Assumptions

The next principle is concerned with the inclusion in extensions of
the ‘strongest’ assumptions (see [3, 12]).

Preferred Assumptions (for Sem): Ming(Ab) = {ψ ∈ Ab | ¬∃φ ∈
Ab such that g(φ)< g(ψ)} ⊆ E for every E ∈ Sem(pABF).

Clearly, the principle above cannot hold in our setting unless
Ming(Ab) itself is `-consistent (otherwise E is not conflict free). A
sufficient condition for assuring this principle for stable semantics in
max-lower-bounded and reversible pABFs is given next:

Proposition 8 Let pABF be a max-lower-bounded and reversible
pABF. If Ming(Ab) ⊆

⋂
MCS@P (pABF) then pABF satisfies the

principle of preferred arguments for the stable semantics.

Proof Let E ∈ Stb(pABF). By Lemma 3, E ∈ MCS@P (pABF).
Since Ming(Ab)⊆

⋂
MCS@P (pABF), we get Ming(Ab)⊆ E . 2

Note that, by Proposition 5, when P = 〈g,max〉, the condition
that Ming(Ab) ⊆

⋂
MCS@P (pABF) is also necessary for assuring

the satisfaction of the preferred argument postulate for stable and
preferred semantics.

6.1.5 Brewka-Eiter Principle

The next postulate in taken from [9]. It says that given pABF =
〈ABF,P〉, if ∆ and Θ are two extensions of ABF, each one contains
a single element that is not in the other one, and the element in Θ\∆

is preferred over the element in ∆\Θ, then ∆ is not a p-extension of
pABF (see also [12]).

BE Principle (for Sem): If ∆=Λ∪{φ} ∈ Sem(ABF) and Θ=Λ∪
{ψ} ∈ Sem(ABF) for some φ ,ψ 6∈ Λ, and if g(ψ) < g(φ), then
∆ 6∈ Sem(pABF).

This principle doesn’t hold for prioritized ABFs in general, as
demonstrated by the following example:

Example 9 Consider again Example 8 (i.e., where Γ = {¬(p∧ q∧
s)} and Ab = {p,q,s}), but this time with g(p) = 1, g(q) = 2, g(s) =
3 and f = min. It can be verified that Stb(pABF) = {{p,q},{p,s}}
and Stb(ABF) = {{p,q},{p,s},{q,s}}. This constitutes a violation
of the BE-principle, since {p,q},{p,s} ∈ Stb(ABF) and g(q) <
g(s), yet {p,s} ∈ Stb(pABF).

Proposition 9 Let pABF = 〈ABF,P〉 be a reversing pABF that is
max-lower-bounded. Then pABF satisfies the BE-principle for the
stable semantics.

Proof Let pABF = 〈ABF,P〉 be as in the proposition. Let ∆,Θ ∈
Stb(ABF) and Λ∪{φ ,ψ} ⊆ Ab s.t. φ ,ψ 6∈ Λ and ∆ = Λ∪{φ} and
Θ = Λ∪ {ψ} and g(ψ) < g(φ). Since ∆,Θ ∈ Stb(ABF), by [22,
Theorem 1], ∆,Θ ∈MCS(ABF). Also, Θ @ ∆ (recall Definition 11),
and so ∆ 6∈MCS@(pABF). By Lemma 3, ∆ 6∈ Stb(pABF). 2

Note 6 Let pABF be a reversing pABF that is max-lower-bounded.
If pABF is also max-upper-bound (and so necessarily f = max), we
have by Proposition 2 that Prf(pABF) = Stb(pABF), and so in this
case the BE-principle holds for the preferred semantics as well.

6.1.6 Principle of Tolerance

The last postulate that we consider is the following:

Tolerance (for Sem): If Sem(ABF) 6= /0 then Sem(pABF) 6= /0.

The principle of tolerance for complete and preferred semantics
is clear from the fact that pABF is in particular an argumentation
framework, and so Cmp(pABF) and Prf(pABF) are not empty.
This principle for stable semantics holds for max-bounded pABFs by
Proposition 2, and for max-lower-bounded and reversible pABF by
Lemma 4. (As noted in [12], when the prioritized assumption-based
framework ABA+ is concerned (see [14]), the principle of tolerance
does not hold for the stable semantics).

6.2 Avoidance of the Drowning Effect
A desirable property of prioritized information systems in general,
and pABFs in particular, is that their conclusions shouldn’t be altered
when assumptions with a lower priority are added. In this section we
consider this property in our context.

Definition 13 Let pABF′ = 〈ABF′,P ′〉 be a prioritized ABF that is
obtained from pABF = 〈ABF,P〉 by adding to ABF some defeasi-
ble assumptions whose priorities are lower than those in Ab, namely:
• ABF = 〈L,Γ,Ab,∼〉 and ABF′ = 〈L,Γ,Ab∪Ab′,∼〉 for Ab′ 6= /0,
• if P = 〈g, f 〉 then P ′ = 〈g′, f 〉, where g′(ψ) > max{g(ϕ) | ϕ ∈
Ab} if ψ ∈ Ab′ and g′(ψ) = g(ψ) otherwise.
In this case we say that pABF′ is an extension of pABF by least-
preferred assumptions.

Below, we use the notations of Definition 13 and assume that
pABF′ is an extension of pABF by least-preferred assumptions (in
particular, Ab is extended by lower-prioritized assumptions in Ab′).

Lemma 5 If ∆ p-attacks ψ in pABF then ∆ p-attacks ψ in pABF′.

Lemma 6 If f is non-decreasing and ∆ p-attacks ψ ∈ Ab in pABF′
then ∆∩Ab p-attacks ψ in pABF.

Note 7 The requirement in Lemma 6 that f is non-decreasing is in-
deed necessary. To see this, consider pABF with Γ = /0, Ab = {p}
and g(p) = 1, and pABF′ with Γ = /0, Ab = {p}, Ab′ = {¬p} and
g′(p) = 1, g′(¬p) = 2, where in both cases f = min. Clearly, pABF′
extended pABF with the least-preferred assumption ¬p. Moreover,
∆ = {p,¬p} p-attacks p in pABF′, but ∆∩Ab = {p} does not p-
attacks p in pABF′, simply because p 6` ¬p.



Corollary 1 Let f be a non-decreasing aggregation and let ψ ∈ Ab.
Then ∆ p-attacks ψ in pABF′ iff ∆∩Ab p-attacks ψ in pABF.

Proof One direction is Lemma 6. For the other direction, suppose
that ∆∩Ab p-attacks ψ in pABF. By Lemma 5, ∆∩Ab p-attacks ψ

also in pABF′, and by Lemma 1, ∆ p-attacks ψ in pABF′. 2

Lemmas 5 and 6 imply that:

Lemma 7 Let f be a non-decreasing aggregation function. If ∆ ∈
Cmp(pABF′) then ∆′ = ∆∩Ab ∈ Cmp(pABF).

The next property assures that conclusions of a pABF are pre-
served under extensions of the pABF by least-preferred assumptions.

Definition 14 An aggregation function f (and so every priority set-
ting P = 〈g, f 〉 that is obtained from it) avoids the drowning effect
with respect to |∼, if for every pABF = 〈ABF,P〉 with P = 〈g, f 〉,
and for every extension pABF′ of pABF by least-preferred assump-
tions, pABF |∼ψ implies that pABF′ |∼ψ (for every formula ψ).

Proposition 10 Any non-decreasing aggregation function avoids the
drowning effect with respect to |∼∩Cmp.

Proof Let pABF = 〈ABF,P〉 be a prioritized ABF with ABF =
〈L,Γ,Ab,∼〉 and P = 〈g, f 〉 where f is non-decreasing, and let
pABF′ be an extension of pABF by least-preferred assumptions.
Suppose for a contradiction that for some formula ψ it holds that
pABF |∼∩Cmp ψ but pABF′ 6|∼∩Cmp ψ . The latter means that there is
some complete extension ∆ of pABF′ for which ∆ 6`L ψ . By the
monotonicity of `L it holds that ∆′ 6`L ψ for every ∆′ ⊆ ∆. In partic-
ular, ∆′ 6`L ψ when ∆′ = ∆∩Ab. But by Lemma 7, ∆′ is a complete
extension of pABF, in a contradiction to pABF |∼∩Cmp ψ . 2

Corollary 2 Let pABF = 〈ABF,P〉 be a prioritized ABF. If P =
〈g,max〉 or P = 〈g,Σ〉, then for every extension pABF′ of pABF by
least-preferred assumptions and for every formula ψ , we have that
pABF |∼∩Cmp ψ implies that pABF′ |∼∩Cmp ψ .

Proof By Proposition 10, since both the maximum function and the
summation function are non-decreasing. 2

Note 8 Since |∼∩Cmp is non-monotonic, extending a prioritized ABF
with extra assumptions does not guarantee the preservation of its
conclusions. Indeed, consider for instance the prioritized framework
pABF1, based on CL, with Γ = /0, Ab = {¬p,q}, the allocation func-
tion g(¬p) = 2, g(q) = 3, and the aggregation function f = max.
Clearly, pABF1 |∼

∩
Cmp ¬p. Now, let pABF2 be a pABF that is ob-

tained by adding to Ab of pABF1 the assumption p with g(p) = 1.
This is the pABF considered in Example 4 (see also Figure 2), and as
it is shown there, pABF2 6|∼

∩
Cmp¬p (in fact, even pABF2 6|∼

∪
Cmp¬p).

7 SUMMARY IN VIEW OF RELATED WORK
Simple contrapositive assumption-based argumentation frameworks
are useful structures for accommodating logical argumentation. In
this paper we extended these frameworks with information about the
relative strength of their arguments. Table 1 summarizes some of the
results for stable semantics.

Priorities have been integrated in all the major approaches to
structured argumentation frameworks, including the assumption-
based argumentation formalism ABA+ (see [12, 14]), ASPIC+ sys-
tems [27, 28], sequent-based argumentation frameworks [5, 6], and
dialectical argumentation frameworks [15, 16].

Property of the pABF Conditions on the preference setting
Consistency Reversible
Closure Max-bounded
Stb⊆MCS@ Max-lower-bounded
Stb⊇MCS@ Max-upper-bounded
Empty preferences Invariance of multiple-occurrence
Extension selection Reversible
Conflict preservation –
Preferred assumptions Reversible & Max-lower-bounded
Brewka-Eiter postulate Max-lower-bounded
Tolerance Reversible & Max-lower-bounded
No drowning effect Non-decreasing

Table 1. Summary of the results for the stable semantics

Apart from ABA+, the incorporation of priorities in all of these
settings is similar: for the attack to take place the attacking argument
should be at least as preferred as the attacked argument. The ABA+

system, in contrast, is based on the idea of reverse defeats: A set of
assumptions ∆ reverse defeats a set of assumptions Θ if and only if
either ∆ attacks Θ and ∆ is not less preferred than Θ, or Θ attacks ∆

and Θ is (strictly) less preferred than ∆.12 The use of reverse defeats
is required for avoiding some violations of rationality postulates such
as consistency (see [14] for more details). However, in [21, Chapter
7] it is shown that such reverse defeats are actually superfluous when
assuming that the inference relation is closed under contraposition
(as in our case), and when using the max-attacks. In Proposition 3
we generalized this result and showed that contraposition together
with reversibility of the preference function is sufficient to guarantee
consistency (and thus reverse defeats are superfluous).

Another difference between the present work and the one in [14]
is that the latter concentrates on the weakest link principle (i.e, max-
attacks) for comparing arguments, while we do not confine ourselves
to a particular preference setting.

In [27], Modgil and Prakken show that for ASPIC+-based frame-
works including priorities, the preferred and stable extensions coin-
cide and correspond to the set of preferred sub-theories of the set
of premises (see [8] and Definition 12). Similar results for sequent-
based argumentation frameworks are shown in [6] (see also [4]).
However, we note that both in ASPIC+ and in sequent-based frame-
works, a finite set of (defeasible) assumptions gives rise to an infinite
set of arguments. The fact that for ABFs the size of an argumentation
graph is bounded by the size of the power-set of defeasible assump-
tions is a benefit of (prioritized) ABFs.

For ASPIC-like systems, Dung and his co-authors have made
axiomatic studies on the inferential behaviour of preference-based
structured argumentation (see, for instance, [18, 19, 20]). Their study
is mainly concerned with arguments constructed on the basis of de-
feasible rules, and as such the focus of their work is different then
the research done in this paper.

In dialectical argumentation frameworks the problem of having
infinite number of arguments out of a finite set of assumptions is
avoided by what is called in [15, 16] depth-bounded logics. Dialecti-
cal argumentation using depth-bounded logics can capture preferred
sub-theories and bring about finite argumentation frameworks, given
a finite set of defeasible assumptions. However, [15, 16] only study
preferred sub-theories based on classical logic (and max-attacks),
whereas we show that preferred-subtheories based on any contrapos-
itive Tarskian logic (and any reversible and max-bounded preference
settings) can be represented by simple contrapositive pABFs.

12 See [25] for the use of similar principles in the context of abstract argu-
mentation frameworks.



Future work includes, among others, a study of the non-monotonic
properties of the entailment relations that are induced by pABFs, and
investigations of translation methods from and to formalisms of in-
corporating preferences in related areas (e.g., logic programming).
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